Secrets of The Diamond Princess

Dr. Michael Levitt's Analysis March 2020

accurately assessed the impact of Covid-19

March 2020 the increasing presence of SARS-CoV-2 around the world and news of Italy's outbreak and strict lockdown response were causing alarm; Neil Ferguson and the Imperial College of London's predictions of high amounts of deaths [18] and the intention of policymakers to also employ lockdown restrictions were widely circulated [27].

Dr. Michael Levitt of Stanford University had been doing continuous real-time data analysis of the Covid-19 epidemic in China since it's start [9], then the rest of the world as it spread [28], and recognized that the estimates of deaths being publicized were far too high.

As governments made decisions about how to respond, he combined his China analysis with contemporary scholarship and the impact of the Covid outbreak and quarantine on the cruise ship the *Diamond Princess* to try to accurately ascertain the true burden of the pandemic. Its possible for the analysis to be so definitive because circumstances on a cruise ship are defined and mimic an intensified version of normal life, with:

- 100% exposure and...
- high reproduction numbers among a ...
- vulnerable population.

Many sound studies and data were available that when carefully analyzed, together provided everything necessary to accurately predict the scope of outcomes.

Covid-19 was allowed to run rampant on the Princess, yet high amounts of immunity was established without high amounts of death.

Dr.Levitt's analysis quickly revealed:

- Covid deaths would be around 1 month's worth of normal death
- a model that over-projected deaths by 9 times is being used to justify decisions

The Diamond Princess compared to a normal community

Cruise ships are ideal for studying characteristics of infectious disease, both in terms of population and environment. There are many features similar to a community taking place in small spaces with close contact: gambling rooms,

theaters, performances, pools, and shared daily facilities like buffets, toilets, spas, elevators, and narrow hallways.

On the Diamond Princess the percent of people over 65 was almost 2.5 times higher than the UK. [33][35]. That was especially relevant for Covid-19 since, as Dr. Levitt knew from following

"... the quarantine on the DP cruise ship, the enclosed circumstances revealed how SARS-CoV-2 can be spread in the community". [11]

the latest research from China, the age demographics of cases and deaths released on 14 February 2020 [17][42] which was backed up by other studies clearly showing younger age groups were not as affected by Covid-19. [51][63][65]

Contemporary data from Italy also corroborated the fact that, unlike certain flus, deaths were

occurring mainly in the higher age groups [37][38]

"... outbreaks on cruise ships can resemble outbreaks in long-term care facilities - in both settings, outbreaks can be extensive and involve high-risk populations. Similar to LTCFs, cruise ships often carry passengers at increased risk for influenza complications - persons aged ≥ 65 and with medical comorbidities"[29]

While there where not people on board the Diamond Princess who would've been in the same poor health as those in hospitals, we can trust that there were many on the level of those unable to live alone, a number of them were not able to walk

on their own [14].

Many places, including a study published in the Journal of the American Geriatrics Society [3], even suggest cruise ships as a viable, inexpensive option instead of an assisted living facility for people who find it difficult to care for themselves, giving them access to meals, cleaning service, on-board pharmacies, and medical service [2].

Prolonged Extreme Exposure: Covid Run Amok

The epidemic began when one passenger began having symptoms on 19 January 2020, and boarded the Diamond Princess the next day [19]; all passengers had potential repeated exposures for 5 days before that person disembarked on 25 January. Another passenger, possibly a second primary case, became symptomatic 23 January, and a food worker 2 February [20]. On 4 February, one day before quarantine was announced, it was confirmed that 10 people out of the 31 (33.3%) tested onboard were positive [10][14],

Before quarantine everyone had 16 days of potential repeated exposures to at least one primary case and multiple secondary cases that existed in the small confines of a ship with high reproduction numbers.

Ship Environment HOUSEHOLD ATTACK RATES

Even before quarantine was implemented and passengers spent more time in their cabins, conditions on the Diamond Princess would be akin to a household. With a population density of 24400/sq. km. [1], the general environment onboard the Diamond Princess would be equivalent to 2 people

The environment on the Diamond Princess cruise ship was similar to that of a home, so exposure was the same as household secondary attack rates, near 100%

continuously living together in a small 900 sq. ft. home.

That means infections should be regarded in terms of ranges of household attack rates, secondary attack rates such as you would find in smaller locations like homes and barracks, where exposure level is 100% because people share meals, facilities, and spend long periods of time in close proximity. [22].

Like other respiratory illness, Covid is more likely to be contagious in small spaces [41]. SARS-CoV-2 showed a high attack rate in household environments, one study finding that 4 out of 13 who were exposed in a home and 5 out of 11 in a chalet (31% and 45% respectively) became infected [6], and the CDC found a lower end of the range at 12% [7]. The Diamond Princess was in the middle, with about 19% of the population testing positive over a 3 week period, about half that being symptomatic [33]

QUARANTINE was INEFFECTIVE

After quarantine was implemented it was not as effective as hoped. Many officials stated the inadequacy of the quarantine, including Russia's Foreign Ministry, the US Centers for Disease Control and Prevention, and Nathalie MacDermott of King's College London who said:

"Obviously the quarantine hasn't worked, and this ship has now become a source of infection." [26]. The CDC's statement on 18 February 2020, 12 days after quarantine started: "the rate of new reports of positives new on board, especially among those without symptoms,

highlights the high burden of infection on the ship & the potential for ongoing risk" [4].

A Japanese infectious disease expert described the situation post-quarantine as "violating all infection control principles" and "completely chaotic" [34], and Dr. Anthony Fauci, head of the White House Coronavirus Task Force: "The quarantine process failed ... I'd like to sugarcoat it and try to be

Dr. Anthony Fauci:
"Something went awry in the process of the quarantining on that ship"

"A day after the quarantine began, hundreds of passengers continued regular cruise activities and ate together at large buffets" [43]

diplomatic about it but it failed. People were getting infected on that ship. Something went awry in the process of the quarantining on that ship" [5]

Due to the nature and layout of a ship and the needs of the many elderly passengers, quarantine was difficult; for example, infected and non-infected passengers shared an elevator: "There were many

difficulties in implementing quarantine, such as creating a dividing traffic line between infectious and noninfectious passengers, finding hospitals and transportation providers willing to accept these patients, transporting individuals, language barriers, and supporting daily life"[14].

Conditions during quarantine also caused some of the same uncertainty and prolonged stress that could be found under lockdown conditions. "Diamond Princess had already reported a shortage of medicines on Day 2 of the quarantine ...The MHLW responded quickly and supplied the medications needed by patients with diabetes and heart disease by Day 7 of the quarantine ... however, there was still a shortage" [26]

Reproduction Numbers

Another strong assurance that the circumstances on the Princess were much more extreme than would be found in normal settings is the high estimates of R on the ship that would continue to influence the amount of infections even after quarantine.

One study estimated R on the Diamond Princess had been 12, peaking after quarantine and not reaching R 2.5 until 4 days after quarantine, and staying above an R of 1 until about 8 days after, with the crew peaking after the passengers [31]. Another estimated R0 was 14.8 before quarantine [1]. This means *R was 4 to 5 times higher* than the highest estimates of ICL's for normal UK communities [18], and at least 6 to 7 times higher than R0 estimates from China [40] and hard-hit Italy [39]

R and Transmission After Quarantine

Considering the high R values, small corridors and cabins and the difficulty in carrying out effective quarantine, its no surprise that Covid still circulated and infections didn't stop. Some

infections that occurred on the Princess after quarantine were not factored in to the previous calculations of R, so its possible that calculated R values were a conservative estimate [31].

The fact that more of the crew, who were mostly in the younger adult age groups, became infected last (after quarantine) "... the infection risk continued to be significant inside the Diamond Princess Ship"
[31] see again

[31] shows that there was a group of them exposed last, meaning that the passengers, who were composed mostly of older people, many in poor health, were bearing the brunt of the early transmission from the first cases.

The fact that Covid was still spreading after quarantine yet few of the passengers got sick later could indicate that large amounts of immunity had been established in that population.

Asymptomatic Infections

There is a lot of controversy about how relevant asymptomatic transmission is, but putting that aside, the high number of asymptomatic infections that have been discovered via testing is important. It is a big factor in how high infection, case and population fatalities appear to be, and so consequently, Covid death rates.

Asymptomatic Covid-positive cases or infections are people who had been exposed to Covid, but for whatever reason didn't become ill, so could represent pre-existing immunity, and thus also an important and significant amount of pre-existing herd immunity.

Majority of Infections are Asymptomatic

A case [23] in Hong Kong referenced in this previously cited study [6] on household attack rates showed that in a home environment with shared meals 9 out of 19 (47%) became infected, at least 2 out of 19 being symptomatic (11% of all exposed, 22% of the positives), meaning **78%** were asymptomatic, 4 times the number of symptomatics. In another Chinese home all were infected with 70% being asymptomatic [44], in hard-hit Wuhan it may have been 60% [51], and even a nursing home in Washington State USA had around 50% asymptomatic [45]. Considering some might not recognize a brief, mild symptom, mildly symptomatics could also be important. A study found among PCR-positives with known exposure asymptomatic and mild symptomatics together accounted for almost 72% of all positives [65]

Ferguson himself stated that "Analyses of data from China as well as data from those returning on repatriation flights suggest that 40-50% of infections were not identified as cases" [18].

That could raise the number of infections on the Princess from 700 to 1400, which would result in 38% of the population infected, (about half of what would be needed to reach Ferguson's HIT of the equivalent of 2997 infected) or 55% of passengers, very close to a lower HIT estimate of 61% that Dr. Levitt found with his scaling (see Behind the Princess), and also close to 1692, the amount of people on the Princess over age 65.

Key points when it may be that herd immunity was developed first among the passengers.

The timing and duration of the testing period, testing protocol, and the optimal time frame to detect Covid may have hampered the ability to discover all infections.

Asymptomatic Infections Are Often Missed:

Testing Period and Viral Shedding Time

Considering testing protocol and criteria [14] onboard the Diamond Princess of testing symptomatics first, and the long testing period over 3 weeks instead of all being tested soon after exposure like in the other case studies, it would've made it likely that asymptomatic or mildly symptomatic infections may have been missed and explain why reported infections were so low.

While in some individuals viral shedding can continue for over a month, it was found to generally be much shorter, declining significantly over 11 days, and after that continuing to become harder to detect [49][50].

It was over a week from the time of exposure to the symptomatic passengers til testing started, plenty of time to be infected and clear the virus, and even after testing started, capacity was low and slowly scaled up [21], many could have been missed over that long time span due to:

- short time that virus can be detected
- limited testing over a span of time
- lack of any sign of infection

How there could be so few severe infections Pre-Existing Immunity

Pre-existing immunity may have come from a person already being exposed to Covid or another coronavirus or pathogen that provided an ammount of immune response that reduced severity, even to the point of a Covid infection being unnoticed.

Later it would be discovered that Covid had T-cell cross immunity with other coronaviruses, but previous to that it was well known that cross immunity even among very different pathogens can provide at least some amount of immunity.[57]

If there is cross-immunity between SARS-CoV-2 and other coronaviruses, they'd have to be prevalent enough to have any noticible benefit. The most obvious place to look for cross immunity would be with other coronaviruses and how common they are throughout the world.

Prevalence of Cornavirus

The few serological studies available show a very high prevalence of asymptomatic people seropositive for the 4 common coronaviruses that have been in continuous circulation, from 58%-98% in the general population [54][52]

In children it is high also; a study of under 2 years olds found they were born with high levels of

antibodies inherited from their mothers, and had high levels of seroconversion by the end, at least 76%.[60]

Showing that immunity, presense of asymptomatics, and spread of these types of viruses is not well understood, the Norweigian study found slightly higher prevalence among

"Estimates for exposure to non-SARS coronaviruses are high, particularly for 229E and OC43" [52]

healthy individuals that patients with respiratory illness. And alarmingly, in Israel a study found 78% of camels infected with another coronavirus that caused world-wide concern, MERS, even though there have been no reported human cases in Israel. [56]

In the chart below, the large difference in the amount of people found positive using serological tests and those using PCR show how a PCR test is like a snapshot of a short period of time, while serological studies can give a broader perspective of how many have been infected.

PREVALENCE of COMM	ION CORON	AVIRUSES		"all"= OC43, NL63, 229E, & HI	KU1						
Country	StudyYears	Virus	%	Location	Test Type	REF					
GERMANY	1974-76	OC43	58.2	general population	serological hemagglutintion inhibition	54					
USA	2008	229E	91.3	general population age 18-65	Sero: immunoassay based on	52					
USA	2008	HKU1	59.2	general population age 18-65	amino- and carboxy-terminally tagged	52					
USA	2008	NL63	98.1	general population age 18-65	recombinant coronavirus nucleocapsid	52					
USA	2008	OC43	90.8	general population age 18-65	antigens.	52					
Netherlands	late 90s-	229E	20	Healthy children 0-2yrs	serological	60					
Netherlands	early	HKU1	36	Healthy children 0-2yrs	serological	60					
Netherlands	2000s	NL63	68	Healthy children 0-2yrs	serological	60					
Netherlands		OC43	76	Healthy children 0-2yrs	serological	60					
Netherlands, Scotland	2006-2011	(all)	14	Hospitalized RTI children 0-2 yrs	PCR	60					
Seattle Washington USA	Nov 2019 -	(all)	6	Patients, Children Hospitals	PCR	59					
Seoul SOUTH KOREA	Jan2020	(all)	9.4	Patients, Children Hospitals	PCR	59					
NORWAY	2006-2015	(all)	10.2	Control	PCR	53					
NORWAY	2006-2015	(all)	9.1	RTI patients	PCR	53					
ISRAEL	2015-16	(all)	10.36	community surveillance	RT-PCR	55					
ISRAEL	2018	MERS	71.8	CAMELS	(Mnt) assay confirmed by MERS-specific (IFA)	56					
SE Asia, Australia,	Feb 2010-	(all)	5.6	children under 10	PCR; nasal ,throat	58					
Latin America	Aug2011	(all)	5.6	children under 10	PCR; nasal ,throat	58					

With overall a *very high prevalnce of 58% to 98%* in the general population, it would make it easy to see how symptomatic case and total infection saturation occured on the Diamond Princess at about 9% and 19% respectively if there is indeed those levels of cross-immunity.

What About the Children: Kids and Covid

One of the shortcomings of the Diamond Princess scenario was that there were few children onboard, so one might wonder whether the presence of children would increase the likelyhood of deaths, but the consensus at the time was that children weren't significant drivers of transmission, were largely asymptomatic, and generally less affected by Covid. [65][63]

There is some controversy about a few newer studies that showed viral load in children might be higher than some adults, but evidence and

observation can refute that; if the outcomes are the same, viral load and transmission are not relevant.

The fact that the Chinese population has more normal age distribution and mixing of age groups than existed on the Princess, and the Chinese case "no data showed that the infected children could serve as the sources of transmitting viruses to adults" [63]

fatality rates align well with the Princess shows that children cannot be transmitting disease more than adults; If children were increasing disease severity more than adults would, fatalies on the Princess would've been less.

the presense of children does not worsen outcomes

SUMMARY

The Diamond Princess had:

- a population particulary susceptable to Covid
- the most susceptable part of the population exposed first
- high contact rate, exposure and R due to the envirinment on the ship

Outcomes show:

- the amount of extra risk or death that Covid generally causes is about a month
 - children do not significantly negatively affect outcomes

Behind the Princess: Step by Step

In their paper of 16 March 2020, [18] an Imperial College of London (ICL) team, headed by epidemiologist Neil Ferguson, further adjusted the age-banded Infection Fatality Ratios (IFR) calculated by Ferguson and Verity et al [36] and used them in their models to make projections of Covid-19 deaths and hospitalizations for the UK and US, and also the effects various Non Pharmaceutical Interventions (NPI) would have on outcomes.

Believing their projections to be too high, Dr. Michael Levitt of Stanford University used that same IFR to try to replicate their results, applying it to 81% of the populations, since ICL assumed that is the herd immunity threshold of SARS-CoV-2.

The results were higher than the projections, so using published data of fatalities and infections from the Covid outbreak on the Diamond Princess [33] he made his own scaling factors, which represent all the variables and parameters ICL used in their models except the IFR, to match the results first to ICL's population fatality projections, then another to lower ICL's projections to reconcile them with reality.

ICL's model and Dr. Levitt's methods are all ways of using the data from IFRs to find Population Fatality Ratios (PFR) and determine the risk to an entire country.

Dr. Levitt's scaling factors could then be used to make more accurate estimates of deaths that would occur in the US, UK and Wuhan, China (post-evacuation).

The amount of deaths that ICL had predicted that would occur were found to be almost 9 times too high.

Dr. Levitt immediately brought this significant discrepancy between reality and the models to the attention of the authors of the ICL paper, to Sir David Spiegelhalter, an advisor to SAGE, of which Ferguson was also a member, in a response to Sir David's Medium article in support of the ICL's predictions that reiterated their incorrect conclusions, and attempted to circulate his analyses among fellow scientists, but was ignored by all.

Here now is a step by step exposition of Dr. Levitt's work on the Diamond Princess

ORIGINAL DOCUMENT CIRCULATED MARCH 2020 BY DR.LEVITT IN ATTEMPT TO AVOID THE UNNECESSARY DISASTER OF LOCKDOWNS

How Accurate are the Number of UK and US Deaths Predicted by Ferguson et al. (2020)?

The preprint (https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf) by the renowned team at Imperial College received international attention by claiming that left untreated coronavirus would infect 81% of the population and lead to 510,000 deaths in the UK and 2,200,000 deaths in the US. Although the Medium post by Sir David Spiegelhalter (https://medium.com/wintoncentre/how-much-normal-risk-does-covid-represent-4539118e1196) at the Winton Center in Cambridge converted these numbers to being no more than one year of normal risk of death in each country, they still seemed high to me as pointed out in my reply to Sir David (https://medium.com/@michael.levitt/the-medium-post-by-david-spiegelhalter-from-the-winton-center-at-cambridge-university-is-well-7b1e157ba876). This lead me to a common-sense test: Apply the Ferguson et al. 2020 method of converting population numbers to fatalities with the Infection Fatality Rates pre-printed in Verity et al. 2020 (Ferguson is senior author). The two situations are the Diamond Princess Cruise ship and the City of Wuhan in China; both were more infected than anywhere else. See the Table below, with each column explained to make it easy to follow.

Α	В	С	D	E	F	G	Н	1	J	K	L
Age-group (years)	% symptomatic cases requiring hospitalisation	% hospitalised cases requiring critical care	Infection Fatality Ratio from Verity et al 2020	United Kingdom Population	United Kingdom: Number of Deaths Expected	United States Population	United States Number of Deaths Expected	Diamond Princess: Population from Russell et al 2020 Table 2	Diamond Princess: Number of Deaths Expected	China Population	Wuhan with 6,000,000 people Number of Deaths Expected
0 to 9	0.1%	5.0%	0.002%	8,065,283	97	39,891,845	491	16	0	171,585,833	9
10 to 19	0.3%	5.0%	0.006%	7,569,160	274	42,398,071	1,565	23	0	166,513,709	2 5
20 to 29	1.2%	5.0%	0.030%	8,630,614	1,564	46,179,065	8,525	347	0	192,891,037	148
30 to 39	3.2%	5.0%	0.080%	9,203,569	4,448	43,980,069	21,650	428	0	223,506,345	456
40 to 49	4.9%	6.3%	0.150%	8,624,679	7,816	40,288,440	37,186	334	0	223,201,182	854
50 to 59	10.2%	12.2%	0.600%	9,138,365	33,126	42,557,686	157,120	398	1	214,623,812	3,286
60 to 69	16.6%	27.4%	2.200%	7,206,475	95,785	37,845,098	512,314	923	12	148,420,591	8,332
70 to 79	24.3%	43.2%	5.100%	5,673,457	174,811	23,009,234	722,064	1,015	32	66,894,771	8,705
80+	27.3%	70.9%	9.300%	3,418,559	192,078	12,915,409	739,085	216	12	26,146,412	6,205

Total Number of Population and Predicted Deaths	67,530,161	510,000	329,064,917	2,200,000	3,700	58	1,433,783,692	28,020
Predicted Deaths from Ferguson et al 2020		510,000		2,200,000				
Predicted Deaths after correction to Diamond Princess		61,311	1	264,478		7		3,368
Assumed Percent Infected from Ferguson et al. 2020	81%							60
UK Fudge factor to match Ferguson et al 2020	0.74587]						
US Fudge factor to match Ferguson et al 2021	0.75966]						
Mean Ferguson Fudge factor for DP & Wuhan	0.75277		2					
Fraction China Population in Wuhan (pop 6,000,000)	0.00418	6,000,000						
Correction Factor to Match Diamond Princess Deaths	0.120	8.32]					

- A Conventional Ten-Year Age stratification.
- B to D Exactly as given in Verity et al (2020) (see (A)) below. I use their Infection Fatality Ratio (IFR) values in column D; IFR is the death rate as a percentage of the infected population.
- E UK population by age group from https://www.populationpyramid.net/united-kingdom/2019/
- F UK deaths calculated from population age groups using the 81% infection rate (Ferguson et al. 2020) (see (B) below) and the IFR values (Verity et al. 2020). A fudge factor (0.74587) is needed to get the 510,000 UK deaths they find.
- G & H Same sanity test is applied to the US population from same site reproduces the Ferguson et al (2020) value of 2.2 million with a very similar fudge factor value of 0.75966. Using a fudge factor is equivalent to a 61% infection rate.
- The same calculation (with Mean US/UK fudge factor of 0.75277) is applied to the Diamond Princess using the population per age group from Russell et al. at University College London (See C) below). https://www.medrxiv.org/content/10.1101/2020.03.05.20031773v2. The number of deaths predicted by Ferguson et al (2020) is 59, more than eight times the actual number of 7 from C). The older passengers may die from old age: if we wait long enough, the Ferguson value will be accurate. These people will be dying WITH coronavirus and not BECAUSE OF coronavirus, an important distinction that needs to be widely understood. As the Diamond Princess is the only case of high levels of infection and testing (Russell et al. 2020), I feel it may be valid to normalize the Ferguson values, dividing them by a factor of 7/59 = 0.120 (or 1/8.32) to give 7 deaths (Russell et al 2020, see C). We note that the effective value of percent infected of 61% is more than the reported 618 infected. We believe our higher number is justified by the number of 'uninfected' passengers who carried coronavirus back home.
- K China population by age group from https://www.populationpyramid.net/china/2019/
- COVID fatalities in Wuhan assuming a population of 6,000,000 with the same age distribution as in China. This value is less than the normal population of 11 million and assumes that the 5 million people said to have left Hubei (SCMP https://www.scmp.com/news/china/society/article/3047720/chinese-premier-li-keqiang-head-coronavirus-crisis-team-outbreak) were mainly from Wuhan. The number of deaths predicted by Ferguson et al (2020) for Wuhan is 28,020, much higher than the actual number as of about 2,550. When corrected by the Diamond Princess correction factor of 0.120, we get 3,850 deaths, which is much closer. This suggests that about 3,000,000 people in Wuhan were infected by coronavirus, something that could and should be tested serologically.

Michael Levitt, Structural Biology, Stanford School of Medicine, Stanford CA 94305, USA 25 March 2020. P1

Step by Step

To match ICL's predictions Dr. Levitt experimented with 2 different methods; one was finding a scaling factor, the second was lowering their herd immunity threshold.

The first column involving calculations is column F. Since ICL believed 81% of a population must be infected to reach herd immunity, to arrive at the numbers in F, first find 81% of the population by multiplying column E by (0.81). Next the IFR is converted from percents to decimals by dividing by 100 (coral column). They are then multiplied: 81% of the population times the IFR in decimal form.

The results (red box) for the UK and US don't match ICL's estimates, and don't match any of the estimates for any of the other R values for the UK in their paper, being 134,000 over the highest.

So Dr. Levitt found scaling factors, what he calls the "fudge factor", needed to match ICL's predictions. The fudge factor is what the red box column has to be multiplied by in order to equal Ferguson's predictions for the US and UK.

The fudge factor (brown column) may represent errors of variables vaguely referred to in the ICL paper that they used in their models, their miscalculation of herd immunity threshold, or both. Multiplying the red-box column by the fudge factor gives a result close to Ferguson's prediction (column F, yellow box).

Another way of arriving at Ferguson ICL's predictions is to not use the fudge factor at all, but rather to change the Herd Immunity Threshold they used, taking 61% of the population instead of 81%, which gives very similar results. (yellow box, far right).

- 1		ı	7
	u	I	١.

Multiply by

Ferguson assumes 81% infected to reach

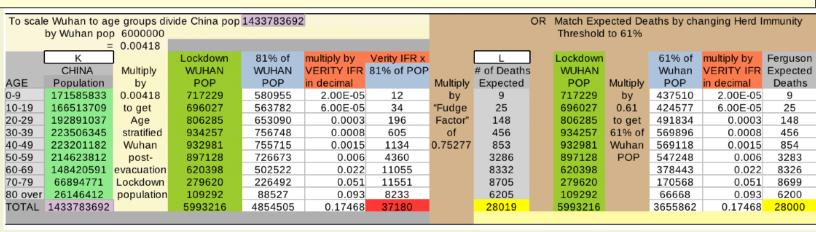
9	9												
		herd				"Fudge				to 61%			
	E	immunity	81% of	multiply by	Verity IFR x	Factor"	F				61% of	multiply by	Equals
	UK	so	UK	VERITY IFR	81% of POP	of	# of Deaths		UK	multiply	UK	VERITY IFR	Ferguson's
AGE	population	Multiply	POP	in decimal		0.74587	Expected		POP	by	POP	in decimal	Prediction
0-9	8065283	by	6532879	2.00E-05	131	to match	97		8065283		4919823	2.00E-05	98
10-19	7569160		6131020	6.00E-05	368	Ferguson's	274		7569160	0.61	4617188	6.00E-05	277
20-29	8630614	0.81	6990797	0.0003	2097	Prediction	1564		8630614		5264675	0.0003	1579
30-39	9203569		7454891	0.0008	5964	of	4448		9203569	to get	5614177	0.0008	4491
40-49	8624679	to get	6985990	0.0015	10479	510000	7816		8624679	61% of	5261054	0.0015	7892
50-59	9138365	81% of	7402076	0.006	44412	UK Deaths	33126		9138365	UK POP	5574403	0.006	33446
60-69	7206475	UK POP	5837245	0.022	128419		95784		7206475		4395950	0.022	96711
70-79	5673457		4595500	0.051	234371		174810		5673457		3460809	0.051	176501
80 over	3418559		2769033	0.093	257520		192076		3418559		2085321	0.093	193935
TOTAL	67530161		54699430	0.17468	683761		509997		67530161		41193398	0.17468	514931
				Doesn't match 510000			close match					close match	

Match prediction by changing Herd Immunity Threshold

USA

Fergus	on assumes	81% infecte	ed to reach			Multiply by		OR	Match pred	liction by o	hanging Her	d Immunity Thre	eshold
		herd				"Fudge				to 61%			
	G	immunity	81% of	multiply by	Verity IFR x	Factor"	Н				61% of	multiply by	Equals
	US	so	US	VERITY IFR	81% of POP	of	# of Deaths		US	multiply	US	VERITY IFR	Ferguson's
AGE	population	Multiply	POP	in decimal		0.74587	Expected		POP	by	POP	in decimal	Prediction
0-9	39891845	by	32312394	2.00E-05	646	to match	491		39891845		24334025	2.00E-05	487
10-19	42398071		34342438	6.00E-05	2061	Ferguson's	1565		42398071	0.61	25862823	6.00E-05	1552
20-29	46179065	0.81	37405043	0.0003	11222	Prediction	8525		46179065		28169230	0.0003	8451
30-39	43980069		35623856	0.0008	28499	of	21650		43980069	to get	26827842	0.0008	21462
40-49	40288440	to get	32633636	0.0015	48950	220000000	37186		40288440	61% of	24575948	0.0015	36864
50-59	42557686	81% of	34471726	0.006	206830	US Deaths	157121		42557686	US POP	25960188	0.006	155761
60-69	37845098	US POP	30654529	0.022	674400		512314		37845098		23085510	0.022	507881
70-79	23009234		18637480	0.051	950511		722066		23009234		14035633	0.051	715817
80 over	12915409		10461481	0.093	972918		739087		12915409		7878399	0.093	732691
TOTAL	329064917		266542583	0.17468	2896037		2200004		329064917		200729599	0.17468	2180966
						Doesn't match 22000000 close match			latch close mar				close match

The Diamond Princess


Here is where we see ICL was over 8 times off

(58 projected deaths divided by the actual 7)

	Fu	udge Factors		• •	uhan & the Diamono ivided by 2 equals		OR Match Expected Deaths by changing Herd Immunity Threshold to 61%						reshold
	I DP		81% of DP	multiply by VERITY IFR	Verity IFR x 81% of POP		J # of Deaths		DP		61% of DP	multiply by VERITY IFR	Ferguson Deaths
AGE	population	Multiply	POP	in decimal		Multiply by	Expected		POP	multiply	POP	in decimal	Expected
0-9	16	by	12.96	2.00E-05	0.0002592	"Fudge	0.000195118		16	by	9.76	2.00E-05	0.0001952
10-19	23		18.63	6.00E-05	0.0011178	Factor"	0.0008414463		23		14.03	6.00E-05	0.0008418
20-29	347	0.81	281.07	0.0003	0.084321	of	0.0634743192		347	0.61	211.67	0.0003	0.063501
30-39	428		346.68	0.0008	0.277344	0.75277	0.2087762429		428		261.08	0.0008	0.208864
40-49	334	to get	270.54	0.0015	0.40581		0.3054815937		334	to get	203.74	0.0015	0.30561
50-59	398	81% of	322.38	0.006	1.93428		1.4560679556		398	61% of	242.78	0.006	1.45668
60-69	923	DP POP	747.63	0.022	16.44786		12.381455572		923	DP POP	563.03	0.022	12.38666
70-79	1015		822.15	0.051	41.92965		31.563382631		1015		619.15	0.051	31.57665
80 over	216		174.96	0.093	16.27128		12.248531446		216		131.76	0.093	12.25368
TOTAL	3700		2997	0.17468	77.351922		58.228206324		3700		2257	0.17468	58.252682
i													

Wuhan

The population was reduced to post-lockdown levels [46] then scaled by age to the entire Chinese population to get a Wuhan age-banded population. The rest of the process was as it was for the above locations.

Projections for the UK, USA and Wuhan, China

The amount of deaths that the Ferguson's model would predict for the Diamond Princess population was then used to find a second scaling factor to project more accurate deaths for the UK, US and Wuhan, China. This scaling factor is the actual number of deaths divided by ICL projected deaths for the Princess.

To determine	actual # of deaths							
derived by	dividing actual deat	ths on the DP		7		Pre	edicted Deaths	
by Ferguso	n's (incorrect) exp	ected deaths		58.228206 =	0.120216652	Based on		
						Dr. Levitt's Scaling to		
	Ferguson's	Ferguson's	Ferguson's	Ferguson's	multiply	Diam	ond Princess [Death
	Expected	Expected	Expected	Expected	by			
AGE	DP	UK	US	WUHAN	scaling factor	UK	US	WUHAN
0-9	0.00	97.45	490.93	9	0.120216652	11.72	59.02	1.08
10-19	0.00	274.38	1565.31	25	to	32.98	188.18	3.01
20-29	0.06	1564.27	8524.53	148	correct	188.05	1024.79	17.79
30-39	0.21	4448.30	21649.61	456	to	534.76	2602.64	54.82
40-49	0.31	7815.96	37185.70	853	Diamond	939.61	4470.34	102.54
50-59	1.46	33125.92	157120.75	3286	Princess	3982.29	18888.53	395.03
60-69	12.38	95784.17	512314.44	8332	deaths	11514.85	61588.73	1001.65
70-79	31.56	174809.93	722065.53	8705		21015.06	86804.30	1046.49
80 over	12.25	192076.48	739086.71	6205		23090.79	88850.53	745.94
TOTAL	58.23	61310.11	264477.06	3368.35				

Equivalent Months of Death

Deaths occuring during a Covid epidemic can be put in perspective of deaths that would normally occur by dividing the normal amount of deaths per year by 12 to get normal deaths per month, and then dividing Covid deaths by that, allowing them to be compared as extra months of death or risk. Using equivalent months of death is quick way to extrapolate population fatalies that works well for the Princess since there was 100% exposure.

		NORMAL D	EATHS	Projected		Equivalent
	Per year		Per month	Deaths	divide by	Deaths per Month
UK	600000	divide by 12	50000	61310	50000	1.24

From the above charts, Covid deaths on the Princess were 1.24 month's worth, **a bit over a month**, or almost **5 weeks worth** of normal deaths in the UK.

Dr. Levitt's scaling of deaths to population is a good match with the relative risk method using infection fatlities (see next section), showing that it was accurately scaled and so could be safely used to find Population Fatality Ratios (PFR).

Sir David Spiegelhalter and Relative Risk

Dr. Levitt brought these errors of calculation and inference to the attention of the public and Sir David Spiegelhalter 22 March 2020 in response to Sir David's Medium article published the day before in support of ICL and Neil Ferguson's work [25] [24]. Sir David has advised SAGE, of whom Ferguson was also an advisor, regarding Covid and is Winton Professor of the Public Understanding of Risk in the Statistical Laboratory at the University of Cambridge.

Sir David used normal background mortality rates for the UK [47] and the Verity-ICL IFR to compare the risk of dying from Covid after becoming infected to normal risk of a year of living. He then showed that extra months of risk translates to equivalent amounts of months of death and used that as proof that ICL predictions were correct, that becoming infected with Covid poses an extra year's worth of risk of dying.

Since the Ferguson predictions were wrong, so too were Sir David's estimates, which are almost 10 times too high.

Despite Sir David's claims that Dr. Levitt was wrong, its very clear and easy to see that when applied to those infected on the Diamond Princess the results are irrefutable, Covid-19 poses only *about 1 month of additional risk to those who become infected*.

Comparing the extra risk of being infected with Covid-19 to the risk of living, there's a bit over a month's worth

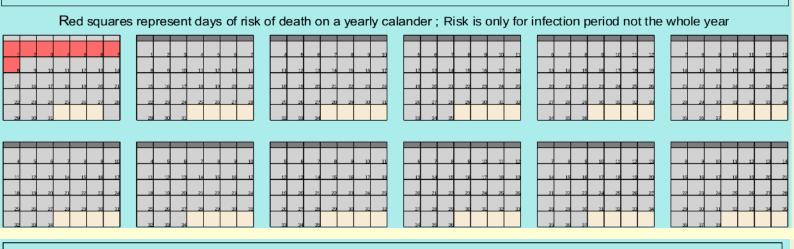
	Risk For ALL INFECTED													
	Fro	m Russell	et al	Relative Risk	multiply by									
	Diamond I	Princess c	ases & death	BACKG	ROUND MO	RTALITY	(IFR divided	12	MONTHS					
AGE	CASES	Deaths	IFR %	Female	Male	ALL	by Mortality)	to get months	of					
0-9	1	0	0	0.01	0.01	0.01	0	0	additional					
10-19	5	0	0	0.02	0.03	0.025	0	0	RISK					
20-29	28	0	0	0.03	0.06	0.045	0	0						
30-39	34	0	0	0.07	0.12	0.095	0	0	for					
40-49	27	0	0	0.19	0.27	0.23	0	0						
50-59	59	0	0	0.39	0.59	0.49	0	0	ALL					
60-69	177	0	0	0.95	1.45	1.2	0	0	INFECTED					
70-79	234	6	2.56	2.78	3.98	3.38	0.76	9.1						
80 over	54	1	1.85	9.53	12.05	10.79	0.17	2.06	1.24					

Comparing the extra risk of being 100% exposed to Covid-19 to the risk of living, there's a bit over **1 week**'s worth of risk to a population

	Risk For ALL EXPOSED														
From	From Russell et al ALL RelativeRisk Ratio % multiply by 12														
Diamond	d Princess po	opulation &	death	Background	PFR divided by	to get									
AGE	DP POP	Deaths	PFR %	Mortality %	Background Mortality	months of Risk									
0-9	16	0	0	0.01	0		Equivalent								
10-19	23	0	0	0.025	0		Months								
20-29	347	0	0	0.045	0		of								
30-39	428	0	0	0.095	0		Normal								
40-49	334	0	0	0.23	0		Death								
50-59	398	0	0	0.49	0										
60-69	923	0	0	1.2	0		0.29								
70-79	1015	6	0.59	3.38	0.17	2.10									
80 over	216	1	0.46	10.79	0.04	0.51	8 days								

Comparing the extra risk of being 100% exposed to Covid-19 to the risk of living, there's under a month's worth of extra risk for ages over 65

	Risk For Exposed Population of Ages Over 65													
From R	ussell et al Dia		cess	ALL	split 60 to 70	RelativeRisk Ratio %	multiply by 12	Averaged						
AGE	DP POP		age PFR %	Background Mortality %	age group into 65 to 70	PFR divided by Background Mortality	to get months of Risk							
0-9	16	0												
10-19	23	0												
20-29	347	0						Equivalent						
30-39	428	0						Months						
40-49	334	0						of						
50-59	398	0						Normal						
60-69	923	0	0	1.2				Death						
60-64					0.6									
65-70					0.6	0	0	0.87						
70-79	1015	6	0.59	3.38	3.38	0.17	2.10							
80 over	216	1	0.46	10.79	10.79	0.04	0.51	3 ½ weeks						


EXTRA RISK SHOWN AS DAYS OF RISK ON A CALENDAR

Comparing the extra risk of being infected with Covid-19 to the risk of living there's a bit over **1 month**'s worth of risk to a population

Comparing the extra risk of being 100% exposed to Covid-19 to the risk of living, its a bit over **1 week**'s worth of risk to a population, while for **ages over 65 its under a month**

Extra Risk for For ALL AGES after being EXPOSED

Fatality by Age Group

A quick way to get projected deaths is to only use over age 65 populations and fatality ratios, since no deaths occured under age 65. Here using the ICL Verity IFR and both the 100% exposure we know occured and ICL's Herd Immunity Threshold (HIT) of 81%. the ICL estimates are far too high, *almost 10 times too high*.

DIAMOND PRINCESS		Diamond	Verity ICL		Verity ICL	Verity ICL	Multiply			
Age	POP	Divide	Princess	IFR %	Divide	IFR %	In Decimal	by Pop		
0-9	16	60-69	Population	0.002	60-69			to		
10-19	23	group	>65	0.006	group			find		
20-29	347	by 2		0.03	by 2		(divide by	Projected	using HI	T of 81%
30-39	428	to get		0.08	to get		100)	Deaths		
40-49	334	65-70		0.15	65-70				81.00%	projected
50-59	398			0.6					of Pop>65	Deaths
60-69	923	65-70	461.5	2.2	65-70	1.1	0.011	5	373.815	4.111965
70-79	1015	70-79	1015	5.1	70-79	5.1	0.051	52	822.15	41.92965
80 over	216	80 over	216	9.3	80 over	9.3	0.093	20	174.96	16.27128
TOTAL	3700	Total >65	1692.5	16.6	Total >65	15.5	0.155	77	1371	62

ICL Estimates were almost 10 times too high											
% population over 65	% population over 65 ICL projected deaths Divide by Actual Deaths Error by factor of										
100.00%	100.00% 77 7 11										
81.00%	62	7	9								

The same basic estimates can be done proportionally by separating out the >65 age groups, since all deaths occured there, as Dr. Levitt showed on Twitter [61], taking population of the Diamond Princess over age 65 dividing that by deaths and dividing the population of a country (here the UK) by that scaling factor. Then it can be translated into months of normal deaths as was shown on pg 5 under "Equivalent Months of Death".

ALL AGE	ES	alent	NOTES									
DIA	MOND PRI	NCESS		UK	UK	UK UK Divid		Divide by	Months of		INF=infections	
Exposure	ure Population Pop/Deaths to get scaling			Exposure	Population	Expecte	d Deaths	Deaths	Normal Death if		f % INF on Princess=19%	
Level	infected	factor for DP Deaths if :		Level		(UK Pop/DP scaling factor)		per	DP Deαths are		% cases on Princess =9%	
		7 deaths 14 deaths				7 deaths	14 deaths	Month	7	14		
19.00%	703	100.43	50.21	100.00%	64000000	637268.85	1274537.70	50000	12.75	25.49	INF% to ALL Pop	
19.00%	703	100.43	50.21	81.00%	51840000	516187.77	1032375.53	50000	10.32	20.65	INF% to ICL HIT (match ICL	

Looking at ICL's predications quickly, knowing that 19% of the Princess was infected and there were 7 deaths, then extrapolating that to a % of the population of the UK, one can see that does match ICL's prediction and one might think its accurate. For comparison, Ferguson's estimate of 510,000 deaths from Covid, divided by normal deaths per month (50000) is 10.2

Fatality by Age Group and Proportion

However on closer inspection we see that, unlike Dr. Levitt's analysis, that would be a straight infection fatality to population ratio that doesn't consider the populations of age bands or agerelated susceptability, like non-uniform age-stratified attack and fatality rates.

Neither would it consider the amount of people who have been exposed, or the presence of any undetected asymptomatics. One would have to assume all asymptomatic infections were acknowledged, which Ferguson knew would not be the case [36], and accepting the idea that only 19% were infected when that is unlikely.

AGES C	VER 65	Notes:										
DIA	MOND PRI	NCESS		UK	UK	UK	UK	Divide by	oy Equivalent		INF=infections	
Exposure Population Pop/Deaths to get scaling				Exposure	Population	Expecte	ed Deaths	Deaths	Months of			
Level	> age 65	factor for DP	Deaths if :	Level	> age 65	(UK Pop/DP	scaling factor)	per	Normal Death		% INF on Princess=19%	
	7 deaths 14 deaths		14 deaths			7 deaths 14 deaths		Month	if % cas		% cases on Prine	cess =9%
100.00%	1692.5	241.79	120.89	100.00%	12695253.5	52506.22	105012.44		DP Death			
81.00%	1370.9	195.85	97.92	81.00%	10283155.3	52506.22	105012.44		7	14		
61.00%	1032.4	147.49	73.74	61.00%	7744104.6	52506.22	105012.44	50000	1.05	2.10	LEVITT scaling	
19.00%	321.6	45.94	22.97	19.00%	2412098.17	52506.22	105012.44	50000]
19.00%	321.6	45.94	22.97	100.00%	12695253.5	276348.52	552697.03	50000	5.53	11.05	INF % to all >65	
9.00%	152.325	21.76	10.88	100.00%	12695253.5	583402.43	1166804.85	50000	11.67	23.34	Case % to all >65	(match ICL)
9.00%	169.25	24.18	12.09	81.00%	10283155.34	472555.96	945111.93	50000	9.45	18.90	Case % to HIT of	all > 65

Also notice that if exposure level on the Princess matches exposure of a population, no matter how low or high the percent is, the amount of equivalent death is the same. It is only if more exposure would take place in the UK population than what occurs on a cruise ship that the proportion of deaths would be higher in the UK than the Diamond Princess.

What might have gone wrong with ICL-Ferguson prediction:

- using a CFR instead of an IFR
- did not properly account for non-uniform attack rates across age bands
- ignored asymptomatics
- miscaluted Herd Immunity Threshold

What Went Wrong: Verity and ICL's IFR was really a CFR

Part of the reason ICL-Ferguson's estimates were so wrong may be that they used a CFR as an IFR. Despite accusations leveled at those who opposed lockdowns that they were confusing infections with cases, it was in fact Neil Fersguson and ICL themselves who appear to have confused or conflated the two. An IFR should be lower than a CFR, and as Dr. Levitt knew from his work on China [42] [25], the ICL-Verity IFR was far too high. It is actually much closer to *case* fatality ratio, *not* an infection fatality ratio.

All infections on the Princess were defined as cases, every postive result was considered a case regardless of whether there were symptoms or contact with other infected people, cases were then just differentiated by being 'symptomatic' or 'asymptomatic'.

The ICL-Verity IFR is a much better match when instead of using all cases, it is applied to just symptomatic cases, which are more likely to be the classical definition of a case and closer to how the Chinese define a case.

The original Verity IFR [36], (column C) before it was altered by ICL, was an even closer match to a Case Fatality Ratio when applied to only symptomatics, (column D), probably because it is closer to the Chinese CFR from 14 February 2020 [42]

				А			В		С		D		
	The IFR f	rom VERI	TY et al	was actual	lly a CF	Original		Applied to	CHINA 14 Feb	2020			
	DP '	Verity ICL	ALL	Projected	Actual	SYMPTOMATIC	Projected	Actual	VERITY	Applied to	only	CFR Normalized	Applied
AGE	Population	IFŔ %					DEATHS			ALL Cases	Symptomatic	to age & pop	To POP
0-9	16	0.002	1	0.000		0	0.000		0.0016	0.000	0.000	0.0000	0.000
10-19	23	0.006	5	0.000		2	0.000		0.007	0.000	0.000	0.0008	0.000
20-29	347	0.03	28	0.008		25	0.008		0.031	0.009	0.008	0.0053	0.018
30-39	428	0.08	34	0.027		27	0.022		0.084	0.029	0.023	0.0111	0.047
40-49	334	0.15	27	0.041		19	0.029		0.16	0.043	0.030	0.0247	0.083
50-59	398	0.6	59	0.354		28	0.168		0.6	0.354	0.168	0.0823	0.328
60-69	923	2.2	177	3.894		76	1.672		1.9	3.363	1.444	0.2867	2.646
70-79	1015	5.1	234	11.934		95	4.845		4.3	10.062	4.085	0.6140	6.232
80 over	216	9.3	54	5.022		29	2.697	<u> </u>	7.8	4.212	2.262	1.0994	2.375
sum	3700	17.468	619	21.280	7	301	9.440	7		18.072	8.020	2.1244	11.729
				off by 3 tim	nes		off by 1.4	times			1.2 times off	<u></u>	off by 1.7 times

SOURCES

- 1.Rocklöv, PhD, H Sjödin, PhD, A Wilder-Smith, MD, COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures, Journal of Travel Medicine, Volume 27, Issue 3, April 2020, taaa030, https://doi.org/10.1093/jtm/taaa030 (first published 28 February 2020)
- 2. https://www.usatoday.com/story/money/personalfinance/retirement/2017/10/06/is-cruise-ship-living-a-cheaper-option-for-seniors-than-assisted-living/106265900/
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC526150/
- 4. https://www.cdc.gov/media/releases/2020/s0218-update-diamond-princess.html
- 5. https://www.usatoday.com/story/travel/cruises/2020/02/17/coronavirus-official-explains-diamond-princess-cruise-quarantine-fail/4785290002/
- 6. Liu, Y., Eggo, R. M. & Kucharski, A. J. Secondary attack rate and superspreading events for SARS-CoV-2. Lancet (2020); https://doi.org/10.1016/S0140-6736(20)30462-1 (February 27, 2020)
- 7. Burke RM, Midgley CM, Dratch A, et al. Active Monitoring of Persons Exposed to Patients with Confirmed COVID-19 United States, January—February 2020. MMWR Morb Mortal Wkly Rep 2020;69:245—246. DOI: http://dx.doi.org/10.15585/mmwr.mm6909e1
- 8. https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html
- 9. Michael Levitt's Report on Coronavirus 2019 from 2-Feb-20 to 2-Mar-20 as widely distributed in China https://www.dropbox.com/s/vp4u2ae5yaswhk5/2.%20All Michael Levitt 22 Reports on%20COVID-19 2-Feb-to-3-Mar.pdf?dl=0> LINKS
- 10. https://www.princess.com/news/notices and advisories/notices/diamond-princess-update.html
- 11. Haplotype networks of SARS-CoV-2 infections in the Diamond Princess cruise ship outbreak Tsuyoshi Sekizuka, Kentaro Itokawa, Tsutomu Kageyama, Shinji Saito, Ikuyo Takayama, Hideki Asanuma, Naganori Nao, Rina Tanaka, Masanori Hashino, Takuri Takahashi, Hajime Kamiya, Takuya Yamagishi, Kensaku Kakimoto, Motoi Suzuki, Hideki Hasegawa, Takaji Wakita, Makoto Kuroda, Proceedings of the National Academy of Sciences Aug 2020, 117 (33) 20198-20201; DOI: 10.1073/pnas.2006824117 (Edited by Y. Kawaoka, University of Wisconsin-Madison, Madison, WI, and approved July 2, 2020 (received for review April 10, 2020)
- 12. https://en.wikipedia.org/wiki/COVID-19 pandemic on naval ships
- 13. https://www.francebleu.fr/infos/sante-sciences/coronavirus-1-046-marins-contamines-sur-le-charles-de-gaulle-bilan-definitif-1587221219

- 14. Yamahata, Y. & Shibata, A. Preparation for Quarantine on the Cruise Ship Diamond Princess in Japan due to COVID-19. JMIR Public Health Surveill 6, e18821 (2020). https://publichealth.jmir.org/2020/2/e18821/ (first published Mar 21, 2020).
- 15. Day Michael. Covid-19: four fifths of cases are asymptomatic, China figures indicate BMJ 2020; 369 :m1375 doi: https://doi.org/10.1136/bmj.m1375 https://www.bmj.com/content/369/bmj.m1375 (Published 02 April 2020)

16.

- 17. 17. https://www.dropbox.com/s/35el2dfdgdi46on/5.a. %20How%20accurate%20are%20the%20number%20of%20UK%20and%20US%20Deaths%20Predicted%20by%20Ferguson%20et%20al%202020_by_Michael_Levitt-v2.pdf?dl=0 ferguson
- 18. https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
- 19. https://www.asahi.com/articles/ASN2372X8N23UTIL03V.html
- 20. Kakimoto K, Kamiya H, Yamagishi T, Matsui T, Suzuki M, Wakita T. Initial Investigation of Transmission of COVID-19 Among Crew Members During Quarantine of a Cruise Ship Yokohama, Japan, February 2020. MMWR Morb Mortal Wkly Rep 2020;69:312-313. DOI:http://dx.doi.org/10.15585/mmwr.mm6911e2
- 21. https://en.wikipedia.org/wiki/COVID-19 pandemic on Diamond Princess
- 22.https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html
- 23. https://www.straitstimes.com/asia/east-asia/coronavirus-nine-members-of-hong-kong-family-feared-infected-after-sharing-hotpot
- 24. Sir David Spiegelhalter https://medium.com/wintoncentre/how-much-normal-risk-does-covid-represent-4539118e1196
- 25. 25. Michael Levitt Medium https://medium.com/@michael.levitt/the-excess-burden-of-death-from-coronavirus-covid-19-is-closer-to-a-month-than-to-a-year-83fca74455b4
- 26. Nakazawa E, Ino H, Akabayashi A. Chronology of COVID-19 Cases on the Diamond Princess Cruise Ship and Ethical Considerations: A Report From Japan. Disaster Med Public Health Prep. 2020;14(4):506-513. doi:10.1017/dmp.2020.50 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156812/ (from 24 Mar 2020)
- 27. https://en.wikipedia.org/wiki/Timeline of the COVID-19 pandemic
- 28. Michael Levitt The Corona Chronicles: Rest of World Michael Levitt, Stanford View or Download

- 29. Millman AJ, Kornylo Duong K, Lafond K, Green NM, Lippold SA, Jhung MA. Influenza Outbreaks Among Passengers and Crew on Two Cruise Ships: A Recent Account of Preparedness and Response to an Ever-Present Challenge. J Travel Med. 2015;22(5):306-311. doi:10.1111/jtm.12215 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869710/
- 30. ESTIMATING RO OF SARS-COV-2 IN HEALTHCARE SETTINGS Laura Temime, Marie-Paule Gustin, Audrey Duval, Niccolò Buetti, Pascal Crépey, Didier Guillemot, Rodolphe ThiéBaut, Philippe Vanhems, Jean-Ralph Zahar, David R.M. Smith, Lulla Opatowski medRxiv 2020.04.20.20072462; doi: https://doi.org/10.1101/2020.04.20.20072462 Now published in Clinical Infectious Diseases doi: 10.1093/cid/ciaa682 (24 April) full text
- 31. Mizumoto K, Chowell G. Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infect Dis Model. 2020 Feb 29;5:264-270. doi: 10.1016/j.idm.2020.02.003. PMID: 32190785; PMCID: PMC7068636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068636/ (published Feb 29 2020)
- 32. https://mp.weixin.qq.com/s/LXTfDmsQLf3qZnu_S_MxcA (origanal Chinese) https://www.cnn.com/2020/12/29/asia/china-coronavirus-seroprevalence-study-intl-hnk/ index.html
- 33. Timothy W Russell, Joel Hellewell, Christopher I Jarvis, Kevin Van Zandvoort, Sam Abbott, Ruwan Ratnayake, CMMID COVID-19 working group, Stefan Flasche, Rosalind M Eggo, W John Edmunds, Adam J Kucharski medRxiv 2020.03.05.20031773; doi: https://doi.org/10.1101/2020.03.05.20031773 (9 March 2020) Now published in Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.12.2000256
- 34. https://www.sciencemag.org/news/2020/02/scientist-decries-completely-chaotic-conditions-cruise-ship-japan-quarantined-after (19 Feb 2020)
- 35. https://www.populationpyramid.net/united-kingdom/2020/
- 36. Estimates of the severity of COVID-19 disease
 Robert Verity, Lucy C Okell, Ilaria Dorigatti, Peter Winskill, Charles Whittaker,
 Natsuko Imai, Gina Cuomo-Dannenburg, Hayley Thompson, Patrick GT Walker, Han Fu,
 Amy Dighe, Jamie T Griffin, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri,
 Anne Cori, Zulma Cucunubá, Rich FitzJohn, Katy Gaythorpe, Will Green, Arran
 Hamlet, Wes Hinsley, Daniel Laydon, Gemma Nedjati-Gilani, Steven Riley, Sabine van
 Elsland, Erik Volz, Haowei Wang, Yuanrong Wang, Xiaoyue Xi, Christl A Donnelly,
 Azra C Ghani, Neil M Ferguson medRxiv 2020.03.09.20033357; doi: https://doi.org/
 10.1101/2020.03.09.20033357 https://www.medrxiv.org/content/
 10.1101/2020.03.09.20033357v1.full-text
- 37. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-1776. doi:10.1001/jama.2020.4683 https://jamanetwork.com/journals/jama/fullarticle/2763667
- 38. Marzia Lazzerini Giovanni Putoto COVID-19 in Italy: momentous decisions and many uncertainties https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30110-8/fulltext Published:March 18, 2020

- 39. Marco D'Arienzo, Angela Coniglio, Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy, Biosafety and Health, https://doi.org/10.1016/j.bsheal.2020.03.004 Volume 2, Issue 2, 2020, Pages 57-59, ISSN 2590-0536, https://doi.org/10.1016/j.bsheal.2020.03.004 12 March 2020 received
- 40. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia Qun Li, M.Med., Xuhua Guan, Ph.D., Peng Wu, Ph.D., Xiaoye Wang, M.P.H., Lei Zhou, M.Med., Yeqing Tong, Ph.D., Ruiqi Ren, M.Med., Kathy S.M. Leung, Ph.D., Eric H.Y. Lau, Ph.D., Jessica Y. Wong, Ph.D., Xuesen Xing, Ph.D., Nijuan Xiang, M.Med., et al. March 26, 2020 N Engl J Med 2020; 382:1199-1207 DOI: 10.1056/NEJMoa2001316 orig 29 Jan
- 41. Noakes CJ, Beggs CB, Sleigh PA, Kerr KG. Modelling the transmission of airborne infections in enclosed spaces. Epidemiol Infect. 2006;134(5):1082-1091. doi:10.1017/S0950268806005875 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2870476/
- 14 feb Levitts china cfr, publishe 10 feb
- 42. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 10;41(2):145-151. Chinese. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003. PMID: 32064853.
- https://pubmed.ncbi.nlm.nih.gov/32064853/ https://doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003
- 43. https://www.nytimes.com/2020/02/22/world/asia/coronavirus-japan-cruise-ship.html
- "A day after the quarantine began, hundreds of passengers continued regular cruise activities and ate together at large buffets"
- 44. *Xingfei Pan,
- Published Online February 19, 2020 https://doi.org/10.1016/ S1473-3099(20)30114-6 Asymptomatic cases in a family cluster with SARS-CoV-2 infection 70% asymp
- 45. MARCH 2020 "Approximately half of all residents with positive test results did not have any symptoms at the time of testing" https://www.medscape.com/viewarticle/928131 2
- 46. https://apnews.com/article/c42eabe1b1e1ba9fcb2ce201cd3abb72 Wuhan 5 million left
- 47. life tables provided by the Office For National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2016to2018
- 48. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488–1494. doi:10.1001/jama.2020.3204 shedding 3 March Among hospitalized patients 5/18 (28%) + at 3 weeks 9/18 (50%) at 2 weeks
- 49. Aerosol and Surface Transmission Potential of SARS-CoV-2
- Joshua L. Santarpia, Danielle N. Rivera, Vicki L. Herrera, M. Jane Morwitzer, Hannah M. Creager, George W. Santarpia, Kevin K. Crown, David M. Brett-Major, Elizabeth R. Schnaubelt, M. Jana Broadhurst, James V. Lawler, St. Patrick Reid, John J. Lowe
- medRxiv 2020.03.23.20039446; doi: https://doi.org/10.1101/2020.03.23.20039446 viral shedding 23 March
- 50. March 19, 2020 N Engl J Med 2020; 382:1177-1179 DOI: 10.1056/NEJMc2001737 https://www.nejm.org/doi/full/10.1056/NEJMc2001737 inversely to Ct cycle the Asym w/high load lived w/symp?
- 51. Evolving Epidemiology and Impact of Non-pharmaceutical Interventions on the Outbreak of Coronavirus Disease 2019 in Wuhan, China
- Chaolong Wang, Li Liu, Xingjie Hao, Huan Guo, Qi Wang, Jiao Huang, Na He, Hongjie Yu, Xihong Lin, An Pan, Sheng Wei, Tangchun Wu
- medRxiv 2020.03.03.20030593; doi: https://doi.org/10.1101/2020.03.03.20030593
- https://www.nature.com/articles/d41586-020-00822-x#ref-CR1 6 March Wuhan
- Wang, C. et al. Preprint at medRxiv https://doi.org/10.1101/2020.03.03.20030593 (2020)

- 52. Severance EG, Bossis I, Dickerson FB, Stallings CR, Origoni AE, Sullens A, Yolken RH, Viscidi RP. Development of a nucleocapsid-based human coronavirus immunoassay and estimates of individuals exposed to coronavirus in a U.S. metropolitan population. Clin Vaccine Immunol. 2008 Dec; 15(12):1805-10. doi: 10.1128/CVI.00124-08. Epub 2008 Oct 22. PMID: 18945884; PMCID: PMC2593164.
- 53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7107437/ norway
- 54. https://pubmed.ncbi.nlm.nih.gov/6248465/ germany
- 55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213580/ israel
- 56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213580/ camels
- 57. Welsh et al [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191532/ Selin LK, Nahill SR, Welsh RM. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J Exp Med. 1994 Jun 1;179(6):1933-43. doi: 10.1084/jem.179.6.1933. PMID: 8195718; PMCID: PMC2191532.
- 58. Taylor S, Lopez P, Weckx L, Borja-Tabora C, Ulloa-Gutierrez R, Lazcano-Ponce E, Kerdpanich A, Angel Rodriguez Weber M, Mascareñas de Los Santos A, Tinoco JC, Safadi MA, Lim FS, Hernandez-de Mezerville M, Faingezicht I, Cruz-Valdez A, Feng Y, Li P, Durviaux S, Haars G, Roy-Ghanta S, Vaughn DW, Nolan T. Respiratory viruses and influenza-like illness: Epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample. J Infect. 2017 Jan;74(1): 29-41. doi: 10.1016/j.jinf.2016.09.003. Epub 2016 Sep 22. PMID: 27667752; PMCID: PMC7112512.
- 59 https://doi.org/10.1093/jpids/piaa037
- 60. The dominance of human coronavirus OC43 and NL63 infections in infants
 Author links open overlay panelRonaldDijkmana1Maarten F.JebbinkaEleanorGauntbJohn
 W.A.RossenacKate E.TempletondTaco W.KuijperseLiavan der Hoeka https://doi.org/10.1016/j.jcv.
 2011.11.011
- 61. Twitter ML over 65 proportional
- 62. Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005 Sep 8;437(7056):209-14. doi: 10.1038/nature04017. Epub 2005 Aug 3. PMID: 16079797.
- 63. 引用本文: Fang Feng, Luo Xiaoping. Facing the pandemic of 2019 novel coronavirus infections: the pediatric perspectives [J]. Chinese Journal of Pediatrics,2020,58 (02): 81-85. DOI: 10.3760/cma.j.issn. 0578-1310.2020.02.001 http://rs.viigle.com/yufabiao/1188722.htm Feb 2020
- 64. the WHO refed by Ferg in 13 MArch ICL paper https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)
- 65. She, J., Liu, L. & Liu, W. COVID-19 epidemic: Disease characteristics in children. J Med Virol 92, 747–754 (2020). https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.25807 March 1